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J. Phys. A: Math. Gen. 19 (1986) 2667-2670. Rinted in Great Britain 

COMMENT 

Generating functions for angular momentum traces 

P R Subramaniant 
Institut fur Theoretische Physik, Johann Wolfgang Goethe Universitat, Postfach 11 1932, 
D-6000 Frankfurt am Main 11, West Germany 

Received 11 November 1985 

Abstract. Generating functions for Tr(Jip) are obtained, one of them being the character 
of a representation of the three-dimensional pure rotation group. Recurrence relations for 
the Bernoulli numbers and the Riemann zeta functions are deduced. 

Interest in the study of traces of products of angular momentum matrices has so far 
been confined to (i)  their evaluation (Ambler er a1 1962a, b, Witschel 1971, 1975, 
Subramanian and Devanathan 1974, hereafter referred to as I, De Meyer and Vanden 
Berghe 1978a), (ii) obtaining recurrence relations (De Meyer and Vanden Berghe 
1978b, Subramanian and Devanathan 1980, 1985, to be referred to hereafter as I1 and 
111, respectively) and (iii) expressing them in terms of familiar functions like the 
Bernoulli polynomials (Ambler er a1 1962a, I), hypergeometric functions (Rashid 1979, 
Ullah 1980) and the Brillouin functions (Subramanian 1986, hereafter referred to as 
IV). It has been shown in I that the trace of a product of angular momentum matrices 
(given either in a Cartesian or a spherical basis) can be expanded in terms of Tr (Jy) ,  
A = x, y or z, JA being the operators for the three Cartesian components of angular 
momentum. 

The purpose of this comment is to obtain generating functions for Tr(JiP) and find 
the nature of its zeros. As a byproduct, sum rules for the Bernoulli numbers and hence 
for the Riemann zeta functions (Abramowitz and Stegun 1970, to be referred to hereafter 
as AS) are derived. 

It is shown in I that 

i 

m = -,' Tr(JiP)= m2P=2(2p+1)-'B2,+l(j+1) 

with p 2 0,J being the angular momentum quantum number in units of h. The Bernoulli 
polynomials B,(x) are defined through the generating function (AS) 

f ( x ,  t )  = t exp(xt)(exp(r) - I)-' 

05 

= B,(x)r"/n! 
n =O 
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Now f(x, t )  -f(x, - t ) ,  x = j+  1, yields, after some simple algebra, 

g ( j ,  t )  = sinh[(2j+ l)t/2][sinh( tl2)l-I 
33 

= Tr(J:P)t2p/(2p)!. 
p = o  

(3) 

As usual, for any matrix 9, 9“ I, the unit matrix. If 7 is the eigenvalue of the J 2  
operator, then 

7 = j ( j +  1) 2j+ 1 = (477 + 1)’’*. (4) 

It follows from equations (3) and (4) that 

%( 7, t )  = sinh[(47 + l)’”t/2][sinh( t/2)]-’ 

= f Tr(JP)tZp/(2p)!.  

With t = x/j, j > 0, in equation (3), we have 

p = o  

G(j ,  x )  = sinh[(2j+ l)x/2j][sinh(x/2j)]-’ 

= c Tr(J:”)xZp/((2p)!j2”). 
W 

p = o  

(5) 

Since aG(j, x)/ax = G(j,  x)Bj(x), where Ej(x) is the Brillouin function (Van Vleck 
1932), one can obtain expressions for Tr(J:”) in terms of (derivatives of) the Brillouin 
function (see also IV) as 

Tr(J?) = jzPazpG(j, X ) / ~ X ~ ~ I , = ~ .  (7) 

p ( e )  = sinr(2j-t 1)0/2][sin(0/2)]-’ 

Substituting t = i 8  in equation (3) and using sinh(i8) = i sin 8, we have 

00 

= c (-1Y Tr(J:P)82P/(2p)!. 
p = o  

Now x”)( 8) is the character of a representation-either single- or double-valued-of 
the three-dimensional pure rotation group, i.e. the trace of a rotation with rotation 
angle 8 (Wigner 1959, Hamermesh 1962, Varshalovich et a1 1975). Moreover (see 
Varshalovich et al 1975) 

x”)(  e) = U,,(COS( 8/29) = C$)(COS( 812)) 

= (2j+ 1) z ~ l ( - 2 j ,  2 ( j+  1); t ;  sin2(8/4)) (9) 

where U,(x) are the Chebyshev polynomials of the second kind (AS), C?)(x) the 
Gegenbauer (ultraspherical) polynomials (AS) and 2Fl( a, b ;  c; x )  the Gauss hyper- 
geometric functions (AS). It is now clear from equations (3)-(9) that g ( j ,  t ) ,  %(7, t ) ,  
G(j,  x), x(J ’ (O) ,  U2j(cos(8/2)), C$’(cos(8/2)), (2j+ 1) 2Fl(-2j, 2 ( j+  1); $; sin2(8/4)) 
are all generating functions for Tr(J:”). It is particularly pleasant to note that J,, Jy 
and J, are the generators of rotations (see, e.g., Merzbacher 1970) and the character 
of a rotation is a generating function for Tr(J:”). 
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As in the case of the familiar special functions due to, say, Hermite, Legendre and 
Laguerre, the power series expansion (PSE), pure recurrence relation, etc, can be 
obtained from the generating function (Rainville 1960, Bell 1968). Thus, for example, 
using the well known PSE for sinh x and cosech x (AS), we obtain, from equation ( 5 ) ,  
the PSE for Tr(JY): 

Tr(JY) = 2(2p + 1)-’4-’(477 + 1)’’2 f (2P2~1)(477+1).n(1-22n-’)B2n. 
n = o  

The binomial coefficients are denoted by ( y ) .  It has been shown in I that for p 2 1 

where G p e l ( ~ )  is a polynomial in 77 of degree p - 1  and Cl=Tr(J2)=(2j+1)77. In 
other words, Tr(J?P) is (477 + 1)’’2 times a polynomial in 77 of degree p with no constant 
term. Since (see 11) 

a, = 2B2, p a l  (12) 

we obtain the following sum rules for B2, from equations ( lo)-(  12), remembering that 
Bo= 1 (AS): 

2 ( 2p+ 1 )(22”-’-1)B2n = 1 
2n ( i )  p 2 l  

(i i)  (’:: ’) n(22n-l- l )Bzn = 4’-’(2p+ l)BZp p 2 2 .  
n = 1  

However, these sum rules seemed to have failed to attract the attention of Ramanujan 
(1927) who obtained a number of recurrence relations for Bzn using quite different 
mathematical techniques. As B2n are intimately connected to the Riemann zeta func- 
tions 5(2n) and 5(1-2n) (see AS), one can easily obtain from equations (13) and (14) 
corresponding recurrence relations for 5(2n) and 5(1-2n) (see also IV). Thus, for 
example, 

Relations (13)-(15) have been checked and found correct for p s  18. 
It is clear from equations (10) and ( 1  1 )  that up-’ = 1/(2p + 1 )  f 0, p 3 1 ,  and hence 

G , ( v ) ,  4 2 0 ,  is precisely of degree q in 7 with real coefficients. Thus {G, (T)}  form 
a simple set of real polynomials (Rainville 1960) and hence any real polynomial of 
degree n 2 0 can be expressed as a unique linear combination of G,( T ) ,  0 S q < n. It 
has been shown in I11 that the adjacent coefficients of G,(v),  q” 1 ,  alternate in sign 
throughout. Hence G , ( - V )  has all the terms of the same sign (positive (negative) 
when q is even (odd), q 2 1 ) .  Thus there is no variation in sign in the coefficients of 
G q ( - ~ ) .  Descartes’ rule of signs (see, for example, Korn and Korn 1968) implies that 
G q ( - v )  has no positive zeros (i.e. G,(-q) = O  has no positive roots) and hence G,(v)  
has no negative zeros. It follows from the fundamental theorem of algebra (see, for 
example, Korn and Korn 1968) that the zeros of G,( T ) ,  q 3 1, are either positive or 
complex. When q 3 1 is odd, G,( 17) has at least one positive zero, as the complex 
zeros occur in pairs of complex conjugates (cf Korn and Korn 1968). For p 3 2, apart 
from the obvious zeros, namely 0 and -a,  the zeros of Tr(JfP) (which is a function of 
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7 )  are simply the zeros of Gp-,( 7) (see equations (IO) and (1 1)). It is gratifying to 
note that the functional dependence of the angular momentum traces exhibits a 
symmetry between fermions ( j  half-integral) and bosons ( j  integral) as the trace has 
the same 7 dependence (see also I) whether j is a half-integer or integer. 

We thank Dr S G Rohoziriski for bringing Varshalovich et a1 (1975) to our attention 
and for the necessary translation. 
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